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Abstract. Cosegmentation methods segment multiple related images
jointly, exploiting their shared appearance to generate more robust fore-
ground models. While existing approaches assume that an oracle will
specify which pairs of images are amenable to cosegmentation, in many
scenarios such external information may be difficult to obtain. This
is problematic, since coupling the “wrong” images for segmentation—
even images of the same object class—can actually deteriorate perfor-
mance relative to single-image segmentation. Rather than manually spec-
ify partner images for cosegmentation, we propose to automatically pre-

dict which images will cosegment well together. We develop a learning-to-
rank approach that identifies good partners, based on paired descriptors
capturing the images’ amenability to joint segmentation. We compare our
approach to alternative methods for partnering images, including basic
image similarity, and show the advantages on two challenging datasets.

1 Introduction

In the cosegmentation problem, we are given two or more images containing
related content, and must segment them each into regions. Because the inputs
are known to share some visual relationship—for example, they contain the
same foreground object, or instances of the same object class—the algorithm
has valuable cues about which pixels might go together. At a high level, the
idea is to detect any common appearance/shapes, exploit that association to
determine likely foreground regions, then use a “shared” foreground model to
jointly guide the region estimates in all input images [1–8]. In contrast, such
cues are not available in the traditional single-image segmentation task, where
the system must rely solely on bottom-up features to perform the grouping.

Methods for cosegmentation have a variety of potential applications. They
are valuable when working with “weakly supervised” data for object recogni-
tion, since they make it possible to automatically isolate the foreground ob-
ject in training images in spite of cluttered backgrounds. This is quite practical
given the availability of tagged Web photos, which are often curated to form
recognition datasets but lack foreground annotations. Furthermore, cosegmen-
tation methods can be applied to discover the re-occurring patterns in an image
database and summarize its key visual themes, or focus on the foreground for
content-based image retrieval tasks. Cosegmentation of batches of related pho-
tos (or video frames) can help initialize an interactive method for rotoscoping,
allowing designers to composite the foreground object onto novel backgrounds.
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Fig. 1: Motivation for our approach. When an image pair share strong foreground sim-
ilarity, their cosegmentation is successful (left). However, when incompatible images
are used—even from the same object category—cosegmentation fails and can even
deterioriate the single-image results (right).

Researchers have made substantial progress on the cosegmentation prob-
lem in recent years. While initially the problem was defined to entail two in-
put images showing very same object against distinct backgrounds [1], recent
work broadens the problem definition to include batches of input images known
only to contain instances of the same object class [2–10]. This is also referred
to as weakly supervised or joint foreground segmentation: each input image is
known to contain an instance from the same object category, but its localization
within the background is unknown.1 Some work further relaxes the two-region
(foreground/background) assumption to tackle k-region segmentation [11, 7, 6].
Furthermore, eager to capitalize on large collections of weakly labeled images,
methods are being developed to account for both noisily labeled instances [11,
8] and scalable optimization [12, 7, 6].

Nonetheless, intra-class appearance variation remains a major obstacle to
accurate cosegmentation. In the ideal “clean” scenario, the input batch of im-
ages would contain very similar-looking objects, making each image mutually
valuable to the rest for building a shared foreground model. However, in many
realistic scenarios, the input batch is not so clean. The foreground object may ac-
tually look quite different in some images, whether due to image tagging errors,
viewpoint variations, or simply diversity in that category’s visual appearance.
As a result, not all images are mutually valuable for cosegmentation. In fact, for
this very reason, recent studies report the discouraging outcome that, on some
datasets, standard single-image segmentation actually exceeds its cosegmenta-
tion counterpart—despite the latter’s presumed advantage of having access to a
batch of weakly labeled data [4, 8]. See Figure 1.

This motivates us to reconsider the standard assumption that all images are
created equal for cosegmentation. Instead, we propose to predict which pairs of
images are likely to successfully cosegment together. Given an input image and
a pool of candidate images sharing the same weak label (e.g., a batch of “car”
images), the goal is to find the candidate that, when coupled with the input
image, will most boost its foreground accuracy if they are jointly segmented. To
this end, we introduce a learning approach that uses a paired description of two

1 We use the terms cosegmentation, joint segmentation, and weakly supervised segmen-

tation interchangeably.
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images to predict their degree of cosegmentation success. The paired description
captures not only to what extent the images seem to agree in appearance, but
also the uncertainty resulting from their shared foreground model. We formulate
the task in a learning-to-rank objective, where successful pairs are constrained
to rank higher than those that cosegment poorly together.

Our approach offers a novel way to automatically “partner” images for coseg-
mentation. Existing methods assume that the “what to cosegment?” question
is already answered by some external oracle [1, 2, 9, 10, 3, 5, 4, 7, 6, 8], or else use
image similarity alone to gauge compatibility [8, 11]. In contrast, we show how
to explicitly learn how well image pairs are likely to cosegment together. We
demonstrate our approach on two challenging datasets, and show there is great
potential to focus joint segmentation only on images where it is most valuable.

2 Related Work

Methods to jointly segment images vary foremost in what they assume about
the input images. At one end of the spectrum are methods that assume strong
agreement in the inputs’ foregrounds, i.e., that the two images contain the same
exact object against differing backgrounds [1]. This setting continues to be devel-
oped, e.g., for greater efficiency [12] and multi-image collections with interactive
user input [13]. In the middle of the spectrum is the weakly supervised scenario,
where the input images are assumed to contain instances of the same object
category [2, 9, 10, 3–8], and the goal is to extract the foreground per image (or
possibly multiple foreground objects [6, 7]). At the other end of the spectrum
are unsupervised methods, which permit the input images to come from mul-
tiple categories. These methods attempt to simultaneously discover the object
region boundaries and the category groupings [14, 11, 15]. We apply our method
in the middle scenario, where we have a pool of candidate partners that are likely
to contain the same object, but they may vary significantly in appearance.

Prior methods assume that all the input images are amenable to cosegment
together. In the strict same-object cosegmentation setting, this is assured by
manually selecting the input pair (or set). For example, a designer may supply
a set of images to be rotoscoped [1], or an analyst may gather aligned brain
images from which to segment pathologies [12], or a consumer may group a
burst of photos at an event (e.g., a soccer game) into a mini-album [13]. In
the weakly supervised setting, the related images often originate from Internet
search for an object’s name. In this case, the majority of methods assume that
all images are mutually amenable to a joint segmentation [2, 9, 10, 3, 5, 4, 7, 6].
In contrast, we propose to automatically determine which among the plausible
candidates would serve as the most effective partners for cosegmentation.

To our knowledge, the only prior work that specifically avoids jointly seg-
menting all input images does so on the basis of a manually defined (i.e., non-
learned) image similarity metric [11, 8]. In [11], regions are clustered using a
context-based descriptor, and a fixed number of the top clusters are used for
joint graph-cut segment refinement. In [8], the joint segmentation is restricted
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to an image and a fixed number of its K nearest neighbors using global de-
scriptor (GIST) similarity. In that work, the motivation for paring down the
neighbors happens to be computational cost—not accuracy—since it uses inter-
image dense correspondences, which are prohibitive to perform on all pairs of
examples for large datasets. In both existing methods, the assumption is that
image similarity alone is sufficient to predict cosegmentation success. In contrast,
our approach learns the behavior of the cosegmentation algorithm, and thus can
predict its success for a novel input pair.

There is limited prior work on predicting the quality of a segmentation,
and all of it targets the single-image segmentation problem [16–20]. Given the
output of a bottom-up segmentation, various methods attempt to classify or
rank the regions by their “object-like” quality, having learned the properties of
true object segmentations [19, 17, 18]. The method of [16] aims to predict the
segmentation accuracy of an algorithm on a novel image based on its global
descriptor, while the interactive approach of [20] estimates how much user input
is required to sufficiently segment a novel input. Unlike any of the above, our
method predicts the extent to which a joint segmentation will succeed based on
the paired relationship of two candidate images.

3 Approach

As input, our approach takes a “query” image Iq and a pool of candidate
partner images P = {I1, . . . , IN}. Among those N candidates, our method se-
lects the best partner image for Iq, that is, the image that when paired with
Iq for cosegmentation is expected to produce the most accurate result. Then, as
output, our method returns the result of cosegmenting Iq with its selected part-
ner, namely, a foreground mask for Iq. In the following, we refer to a candidate
partner image as a “source” image, denoted Is ∈ P.

In our implementation, we study the weakly supervised setting, where images
in P contain the same object category as Iq. This forces our method to perform
fine-grained analysis to select among all the possibly relevant partners. Even with
weak supervision, not all images are satisfactory cosegmentation partners, since
they contain objects exhibiting complex appearance and viewpoint variations,
as discussed above.

In the following, we first define a basic single-image segmentation algorithm
(Sec. 3.1). We then expand that basic engine to handle cosegmentation of a pair
of images (Sec. 3.2). Finally, we introduce our ranking approach to predict the
compatibility of two images for cosegmentation (Sec. 3.3).

3.1 Single-image segmentation engine

We first describe an approach to perform single-image segmentation. In addi-
tion to serving as a baseline for the cosegmentation methods, we will also use
the output of the single-image segmentation when we predict cosegmentation
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compatibility (cf. Sec. 3.3). The method below produces good foreground ini-
tializations, though alternative single-image methods could also be plugged into
our framework.

Given an image Ii, the goal is to estimate a label matrix Li of the same
dimensions, where Li(p) = yip denotes the binary label for the pixel p, and

yip ∈ {0, 1}. The label 0 denotes background (bg) and 1 denotes foreground (fg).
We use a standard Markov Random Field (MRF) approach, where each pixel p
is a node connected to its spatial neighbors.

We define the MRF’s unary potentials using saliency and a foreground color
model, as follows. Since this is a single-image segmentation, there is no external
knowledge about where the foreground is. Thus, we rely on a generic saliency
metric to estimate the plausible foreground region, then boostrap an approxi-
mate foreground color model from those pixels. Specifically, for image Ii we first
compute its pixel-wise saliency map Si using a state-of-the-art algorithm [21].
We threshold that real-valued map by its average, yielding an initial estimate
for the foreground mask. Then, we use the pixels inside (outside) that mask
to learn a Gaussian mixture model (GMM) for the foreground (background) in
RGB space. Let Gi

fg and Gi
bg denote those two mixture models.

The single-image MRF energy function uses these color models and the
saliency map:

Esing(L
i) =

∑

p

Ai
p(y

i
p) +

∑

p

Xi
p(y

i
p) +

∑

p,p′∈N
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p,p′

(
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i
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where Ai
p and Xi

p are unary terms, T i
p,p′ is a pairwise term, and N consists of

all 4-connected neighborhoods. We define the appearance likelihood term as:

Ai
p(y

i
p) = − logP (F i(p)|Gi

yi
p
), (2)

where F i(p) denotes the RGB color for pixel p in image Ii. This term reflects
the cost of assigning a pixel as fg (bg) according to the GMM models. We define
the saliency prior unary term as:

Xi
p(y

i
p = 1) = − logP (Si(p)), (3)

where Si(p) denotes the saliency value for pixel p. This term reflects the cost
of assigning a pixel as fg, where more salient pixels are assumed more likely
to be foreground. For the background label, we have the corresponding term,
Xi

p(y
i
p = 0) = − log(1− P (Si(p))). Finally, the pairwise term,

T i
p,p′(yip, y

i
p′) = δ(yip 6= yip′) exp(−β‖F i(p)− F i(p′)‖), (4)

is a standard smoothness prior that penalizes assigning different labels to neigh-
boring pixels that are similar in color, where β is a scaling parameter.

We employ graph cuts to efficiently minimize Eqn. 1 and apply five rounds of
iterative refinement (as in GrabCut [22]), alternating between learning the like-
lihood functions and obtaining the label estimates. The result is a label matrix
Li∗

sing = argminLi Esing(L
i).
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3.2 Paired-image cosegmentation engine

Next we define the cosegmentation engine we use in our implementation, which
expands on the single-image approach above. During training, our method tar-
gets a given cosegmentation algorithm, as we will see in the next section. Any
existing cosegmentation algorithm could be plugged in; the role of our method
is to improve its results by focusing on the most compatible image partners.

Given a query and source image pair, Iq and Is ∈ P, we define an energy
function over their joint labeling. This model is initialized using GMM appear-

ance models learned from L
q∗

sing and Ls∗

sing, the single-image results for the two
inputs obtained by optimizing Eqn. (1). Specifically, we pool the foreground
(background) pixels from both label masks to learn the joint GMM G

qs
fg (Gqs

bg)
in RGB space. Here and below, the superscript qs denotes a joint term that is a
function of both the query and source images.

Let Lqs be shorthand for the two label matrices output by the cosegmenta-
tion, Lqs = (Lq, Ls). Our joint energy function takes the following form:

Ecoseg(L
qs) = Esing(L

q) + Esing(L
s) +Θqs

app(L
qs) +Θ

qs
match(L

qs), (5)

where the first two terms refer to the single-image energy for either output, as
defined in Eqn. (1), and Θqs

app and Θ
qs
match capture the energy of a joint label

assignment based on appearance and matching terms, respectively (and will be
defined next). Note that even though the energy function contains terms for
individual label matrices, they are optimized jointly to minimize Eqn. (5).

The joint appearance likelihood term is defined as

Θqs
app(L

qs) =
∑

p∈Iq

Aqs
p (yqp) +

∑

r∈Is

Aqs
r (ysr), (6)

and it captures the extent to which the two output masks deviate from the ex-
pected foreground/background appearance discovered with saliency. As before,
each Aqs

p term is defined as the negative log likelihood over the GMM proba-
bilities; however, here it uses the joint GMM appearance models G

qs
fg and G

qs
bg

obtained by pooling pixels from the two images’ initial foreground estimates.
The matching likelihood term Θ

qs
match(L

qs) leverages a dense pixel-level corre-
spondence to establish pairwise links between the two input images. Let Fqs(p)
denote the 2D flow vector from pixel p in image Iq to its match in image Is. We
introduce an edge in the cosegmentation MRF connecting each pixel p ∈ Iq to
its matching pixel r ∈ Is, where r = p + Fqs(p). Using these correspondences,
the matching likelihood is a contrast-sensitive smoothness potential over linked
(matched) pixels in the two images:

Θ
qs
match(L

qs) =
∑

p∈Iq,r∈Is

δ(yqp 6= ysr) exp(−β‖Dq(p)−Ds(r)‖), (7)

where Di(p) is a local image descriptor computed at pixel p (we use dense SIFT),
and β is a scaling constant. This energy term encourages similar-looking matched

pixels between the query and source to take the same fg/bg label.
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The matching in Eqn. (7) helps cosegmentation robustness. We compute
Fqs using the Deformable Spatial Pyramid (DSP) matching algorithm [23], an
efficient method that regularizes match consistency across a pyramid of spatial
regions and permits cross-scale matches. By linking p ∈ Iq to r ∈ Is—rather
than naively linking p ∈ Iq to p ∈ Is—we gain robustness to the translation and
scale of the foreground object in the two input images. This is valuable when the
inputs do share a similar-looking object, but its global placement or size varies.
Notably, this flexibility is lacking in a strictly image-based global comparison
approach (like GIST and the scale-sensitive SIFT Flow as used in [8]). It thus
enables mutual discovery of the object between the two images.

To optimize Eqn. (5), we again employ graph cuts with iterative updates. This
yields the cosegmented output image pair, (Lq∗

coseg, L
s∗

coseg) = argminLqs Ecoseg(L
qs).

3.3 Learning cosegmentation compatibility to predict partners

Having defined the underlying single-image and paired-image segmentation algo-
rithms, we can now present our approach to predict which partner image is best
suited for cosegmentation with a novel query image. There are two main compo-
nents: 1) extracting features that are suggestive of cosegmentation success, and
2) training a ranking function to prioritize successful partners.

We are given a training set T = {(T 1, L1), . . . , (IM , LM )} of M images la-
beled with their ground truth foreground masks, where T i denotes an image and
Li denotes its mask. This set is not only disjoint from the candidate partner set
P defined above, it also does not contain images of the same object category
as what appears in P or the eventual novel queries. This is important, since it
means our approach is required to learn generic cues indicative of cosegmenta-
tion compatibility, as opposed to object-specific cues. While object-specific cues
are presumably easier to exploit, it may be impractical to train a model for ev-
ery new object class of interest. Instead, all learning is done on data and classes
disjoint from the weakly supervised image set P.

Training a ranker for cosegmentation compatibility First, we apply
the cosegmentation algorithm (Sec. 3.2) to every pair of images in T . Each
image in the training set acts as a “query” in turn, while the remaining images
act as its candidate source images. Let (T i

q , T
j
s ) denote one such query-source

pair comprised of training images T i and T j . For each pairing, we record the
cosegmentation quality that results for T i

q , that is, the intersection-over-union

overlap score between the ground truth Li and the cosegmentation estimate
Li∗

coseg that results from optimizing Eqn. (5) with T i as the query and T j as the
source. After computing these scores for all training pairs (i, j) ∈ {1, . . . ,M},
we have a set of training tuples 〈T i, T j , oij〉, where oij denotes the overlap score
for pair i, j. The scores will vary across pairs depending on their compatibility.

Next, we generate a ranked list of source images for each training example. We
use these M -length ranked lists to train a ranking function. As input, the learned
ranking function f takes features computed on an image pair φ(Iq, Is) (to be
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defined below), and it returns as output a score predicting their cosegmentation
compatibility. For simplicity we train a linear ranking function:

f(φ(Iq, Is)) = w
Tφ(Iq, Is), (8)

where w is a vector of the same dimensionality as the feature space. To learn w

from the training tuples, we want to constrain it to return higher scores for more
compatible pairs. Let O be the set of pairs of all training tuples {(i, j), (i, k)} for
which oij > oik, for all i = 1, . . . ,M . Using the SVM Rank formulation of [24],
we seek the projection of the data that preserves these training set orders, with
a regularizer that favors a large margin between nearest-projected pairs:

minimize
1

2
||w||2

2
+ C

∑

ξ2ijk (9)

s.t. w
Tφ(T i, T j) ≥ w

Tφ(T i, T k) + 1− ξijk

∀(i, j, k) ∈ O,

where the constant C balances the regularizer and constraints. In other words,
the model should score a training pair with greater overlap higher than one with
lower overlap.2

Defining features indicative of compatibility Next we define the features
φ(Iq, Is). Their purpose is to expose the images’ compatibility for cosegmenta-
tion. We define features of two types: 1) source image features meant to capture
the quality of the source in general, and 2) inter-image features meant to capture
the likelihood of success in coupling a particular source and query. The former
makes use of the single-image segmentation mask Ls∗

sing from Sec. 3.1; the latter

makes use of the cosegmentation estimates Lq∗

coseg and Ls∗

coseg from Sec. 3.2.

Source image features Ideally, we would like to cosegment with a source image
that is easy to segment on its own, since then it has better ability to guide the
foreground (when the query is compatible). Thus, our three source features aim
to expose the predicted quality of the source’s single-image segmentation:

– Foreground-background separability : We use Ls∗

sing to compute separate color

histograms for the (estimated) fg and bg regions, then record the χ2 distance
between the two histograms as a feature. More distinctive foregrounds will
yield higher χ2 distances.

– Graph cuts uncertainty : We use dynamic graph cuts [25] to measure each
pixel’s graph cut uncertainty. We bin these uncertainties from the foreground
pixels of Ls∗

sing into 5 bins and record this distribution as the feature. It
captures how uncertain the single image segmentation is.

– Number of connected components : We record the number of connected com-
ponents in Ls∗

sing as a measure of how coherent the source’s single-image
segmentation is.

2 Alternatively, one could use regression. However, ranking has the advantage of giving
us more control over which training tuples are enforced, and it places emphasis only
on the relative scores (not absolute values), which is what we care about for deciding
which partner is best.
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Query

Shape Features

Source to Query transfer

with dense matching

Source (Good)

Source (Bad)

(a)

(b)

(c)

(d)

(e)

Fig. 2: Feature illustration. Center: an example query and two candidate source im-
ages. (a-c): Cropped single-image segmentation masks (top) and corresponding HOGs
(bottom). These features are good indicators of foreground shape similarity, as we see
by comparing the query (b) to its good and bad source partners (a) and (c), respec-
tively. (d-e): Results of mask transfer with dense matching from the source image
to the query image. The success of this transfer clearly depends on the compatibility
between the query and source (i.e., it succeeds in (d) but fails in (e)).

Inter-image features To detect good partner candidates, the quality of the source
image alone is insufficient; we also want to look explicitly at the compatibility
of the particular input pair. Thus, our three inter-image features aim to reveal
the predicted success of the pair’s cosegmentation:

– Foreground similarity : We compute the foreground similarity between the
source and query using their estimated foregrounds from single-image seg-
mentation. Specifically, we record two χ2 distances: one between their color
histograms, and one between their SIFT bag-of-words histograms. By exclud-
ing background from this feature, we leave open the possibility to discover
compatible partners with varying backgrounds.

– Shape similarity : We resize the cropped foreground region from Ls∗

sing to the

size of the cropped foreground region from L
q∗

sing. To gauge shape similarity,
we record both the overlap between those masks as well as the L2 distance on
the HOG features computed on the original images at those masked positions
(see Figure 2 (a-c)).

– Dense matching quality : We warp Ls∗

sing to the query using the dense match-
ing flow field Fqs from DSP [23]. To capture the matching quality, we record

the overlap score between the transferred source mask and L
q∗

sing (see Fig-
ure 2 (d-e)). Here the saliency-driven foreground masks and dense matching
serve as two independent signals of alignment. If the two images permit an
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accurate dense match that agrees with the saliency-based foreground, there
is evidence that they are closely related. This compatibility cue offers some
tolerance to foreground translation and scale variation in the two inputs.

– GIST similarity : To capture global layout similarity of the image pair, we
record the L2 distance between their GIST [26] descriptors.

Altogether, we have 7 and 6 feature dimensions for the source and inter-
image features, respectively. We concatenate them to form the 13-dimensional
φ(Iq, Is) feature. These descriptors are used in training (Eqn. (9)). Analyzing
the learned weights, we find that the dense matching quality, shape similarity,
GIST similarity, and fg-bg separability are the most useful features for our task.

Predicting the partner for a novel image At test time, we are given a novel
image Iq and the partner candidate set P. We compute its descriptor φ(Iq, Is)
for every Is ∈ P, apply the learned ranking function, and select as its partner
the one that maximizes the predicted cosegmentation compatibility:

Ip
∗

= argmax
Is∈P

f(φ(Iq, Is)). (10)

Finally, we return the foreground segmentation for Iq that results from coseg-
menting the pair (Iq, Ip

∗

) using the algorithm in Sec. 3.2.

4 Results

Datasets: We evaluate our approach on two challenging publicly available
datasets. The first is MIT Object Discovery (MIT), a dataset recently intro-
duced for evaluating object foreground discovery through cosegmentation [8].3

It consists of Internet images of objects from three classes: Airplane, Car, and
Horse. The images within a class contain significant appearance and viewpoint
variation. We use the 100-image per class subset designated by the authors to
enable comparisons with multiple other existing methods. The second dataset is
the Caltech-28, a subset of 28 of the Caltech-1014 classes designated by [3] for
study in weakly supervised joint segmentation. The 30 images per class originate
from Internet search and cover an array of different objects.

Methods compared: We compare to results reported by a number of state-of-
the-art cosegmentation techniques, namely [5, 7, 6, 8] on MIT and [3, 22, 9, 27] on
Caltech-28. In addition, we implement several baseline techniques:

– Single-Seg: the saliency-based single-image approach defined in Sec. 3.1.
This baseline reveals to what extent a query benefits at all from cosegmen-
tation.

3 http://people.csail.mit.edu/mrub/ObjectDiscovery/
4 http://www.vision.caltech.edu/ImageDatasets/Caltech101/
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Single-Seg Rand-Coseg GIST-Coseg Ours Ours-Best k Upper bound

Airplane 39.14 42.22 42.34 45.81 46.26 57.39

Car 46.76 52.47 50.95 53.63 54.31 61.81

Horse 49.82 51.69 52.73 50.18 52.86 63.52

Table 1: Overlap accuracy on the MIT Object Discovery dataset.

– Rand-Coseg: the cosegmentation approach defined in Sec. 3.2 applied with
a random image from the same object category as the partner source image,
averaged over 20 trials. This baseline helps illustrate the need to actively
choose a cosegmentation partner among a weakly labeled dataset.

– GIST-Coseg: the same cosegmentation approach is applied using the source
image that looks most similar to the query, in terms of GIST descriptors. This
baseline highlights how image similarity alone—used in existing work [11,
8]—can be insufficient to determine good partners for cosegmentation.

– Ours-Best k: we apply our method, but instead of choosing the single
maximally ranked image for cosegmentation, we refer to ground truth to
pick the best partner from among the k = 5 source images our method
ranks most highly.

– Upper bound: the upper bound for cosegmentation accuracy. We use ground
truth to select the partner leading to the maximum overlap score for each
query. This reveals the best accuracy any method could possibly attain for
the cosegmentation partner selection problem.

As discussed above, we consider the weakly supervised setting. All baselines
reference the exact same candidate set P as our method. Our method’s training
set T is always disjoint from P, and furthermore P and T never overlap in object
class. For example, when applying our method to Cars in the MIT data, we train
it using only images of Airplanes and Horses.

To quantify segmentation accuracy, we use the standard intersection-over-
union overlap accuracy score (Jaccard index), unless otherwise noted.

Implementation details: The color model GMMs consist of 5 mixture com-
ponents. The scale parameters β are set automatically as the inverse of the mean
of all individual distances. We use 50 visual words for the SIFT bag-of-words
used in the inter-image foreground similarity, and 11 bins per color channel in all
color histograms. The approximate run time per pair is between 10-12 seconds,
which is dominated by the SIFT extraction step.

4.1 Results on MIT Object Discovery dataset

Table 1 shows our results against the baselines on all 3 classes in the MIT dataset.
We observe several things from this result. First, the large gap between Single-
Seg and the Upper bound underscores the fact that cosegmentation can indeed
exceed the accuracy of single-image segmentation on challenging images—if suit-
able partners are used. Despite the images’ diversity within a single class, the
shared appearance in the optimally chosen partner is beneficial. Second, we see
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Fig. 3: Examples of the four top-ranked neighbors for a novel query, using either the
GIST nearest neighbors (center block) or our learned ranking function (right block).
Best viewed in color. While both methods can identify similar-looking source images
among their top-ranked set, our method identifies partners that are more closely aligned
in viewpoint or appearance and thus amenable to cosegmentation.

Joulin et al. [5] Joulin et al. [6] Kim et al. [7] Ours Rub. et al. [8]

Airplane 15.26 11.72 7.9 45.81 55.81

Car 37.15 35.15 0.04 53.63 64.42

Horse 30.16 29.53 6.43 50.18 51.65

Table 2: Comparison to state-of-the-art cosegmentation methods on the MIT
Object Discovery dataset, in terms of average overlap.

that our approach outperforms the baselines in nearly every case. This supports
our key claim: it is valuable to actively choose an appropriate cosegmentation
partner by learning the cues for success/failure. In two of three classes we out-
perform the GIST-Coseg baseline, showing that off-the-shelf image similarity is
inferior to our learning approach for this problem. The Horse class is an excep-
tion, where we underperform the GIST-Coseg baseline. This is likely due to weak
saliency priors in some of the more cluttered Horse images. Third, the fact that
the Rand-Coseg approach does as well as it does (in fact, nearly as good as the
GIST-Coseg method for Airplanes) indicates that many images of the same class
offer some degree of help with cosegmentation. Hence, our method’s gain is due
to its fine-grained analysis of the candidate source images. Finally, the bump in
accuracy we achieve if considering the k top-ranked source images (Ours-Best k)
indicates that future refinements of our method should consider ways to exploit
the ranked partners beyond the top-ranked example.

Figure 3 shows examples of the top-ranked partner images produced by the
GIST-Coseg baseline and our approach, for a variety of query images in the
MIT dataset. We see how our method’s learning strategy pays off: it focuses on
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Single-Seg Rand-Coseg GIST-Coseg Ours Ours-Best k Upper bound

B
e
st

brain 73.31 72.43 72.54 75.73 76.09 76.22
ferry 54.99 55.87 55.23 57.64 57.71 58.02

dalmatian 39.58 39.13 38.15 40.23 40.94 41.59
ewer 63.87 62.58 63.87 65.86 66.18 66.53

joshua tree 53.04 54.05 54.45 56.21 57.12 57.52
cougar face 58.19 57.39 56.51 58.25 58.53 59.05
sunflower 70.48 70.10 69.77 71.29 72.07 73.48
motorbike 57.38 55.86 55.79 57.21 58.12 58.59
euphonium 57.72 57.25 58.32 59.45 60.27 60.28
kangaroo 59.79 59.26 59.13 60.24 60.57 61.81

W
o
rs
t lotus 76.71 75.98 78.38 77.59 79.51 80.16

grand piano 67.21 67.28 67.93 66.58 67.01 68.33
crab 61.86 62.25 62.11 61.23 62.3 62.46
watch 55.00 56.4 57.72 56.11 56.16 58.30

Table 3: Accuracy on the Caltech-28 dataset, in terms of average overlap. We
show the 10 best and 4 worst performing classes (see Supp. for all classes).

source images that have more fine-grained compatability with the query image.
The GIST neighbors are globally similar, but can be too distinct in viewpoint or
appearance to assist in cosegmenting the query. In contrast, the partner source
images retrieved by our ranking algorithm are better equipped to share a fore-
ground model due to their viewpoint, appearance, and/or individual saliency.

Table 2 compares our result to several state-of-the-art cosegmentation meth-
ods.5 Our method outperforms all the existing methods by a large margin, except
the method of [8]. Our disadvantage in that case may be due to the fact that [8]
operates over a joint graph of all images in the class at once, whereas we con-
sider pairs of images for cosegmentation. This suggests future work to extend
our algorithm, e.g., by using our compatibility predictions as weights within a
multi-image cosegmentation graph.

4.2 Results on Caltech-28 dataset

Table 3 shows the results for the Caltech-28 dataset, in the same format as Ta-
ble 1 above. Due to space constraints, we show just a sample of the 28 classes.
Specifically, we display the top 10 cases where we most outperform GIST-Coseg
and the bottom 4 cases where we most underperform GIST-Coseg. See the
Supp. file for all classes.

The analysis is fairly similar to our MIT dataset results. We again see good
support for actively selecting a cosegmentation partner: our method outperforms
the Rand-Coseg and GIST-Coseg baselines in most cases. Overall, we outperform
GIST-Coseg in 23 of the 28 classes, and Single-Seg in 20 of the 28 classes. Our
method is also quite close to the Upper bound on this dataset, only 1.5 points
away on average.

5 These are the overlap accuracies reported in [8], where the authors applied the public
source code to generate results for [5–7].
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Method Average Precision

Spatial Topic Model-Coseg [9] 67

Single-Seg 82.71

GrabCut-Coseg (see [3]) 81.5

ClassCut-Coseg [3] 83.6

BPLR-Coseg [27] 85.6

Ours 85.81

Table 4: Comparison to state-of-the-art cosegmentation algorithms on
the Caltech-28 dataset.

However, for the Caltech data, the gap between Single-Seg and the Upper
bound—while still noticeably wider than the gap between our method and the
Upper bound—is also narrowed considerably compared to the MIT data. This
indicates that the Caltech images have greater regularity within a class and/or
more salient foregrounds (both of which we find true upon visual inspection). In
fact, Single-Seg can even outperform the cosegmentation methods in some cases
(e.g., see motorbike). This finding agrees with previous reports in [8, 4]; while
one hopes to see gains from the “more supervised” cosegmentation task, single-
image segmentation can be competitive either when the intra-class variation is
too high or the foreground is particularly salient.

Finally, we compare our method to state-of-the-art cosegmentation methods
using their published numbers on the Caltech-28. Table 4 shows the results, in
terms of average precision (the metric reported in the prior work). Our method is
more accurate than all the previous results. Notably, all the prior cosegmentation
results ([9, 3, 27] and the multi-image GrabCut [22] extension defined in [3])
indiscriminately use all the input images for joint segmentation, whereas our
method selects the single most effective partner per query. This result is more
evidence for the advantage of doing so.

5 Conclusions

Cosegmentation injects valuable implicit top-down information for segmentation,
based on commonalities between related input images. Rather than assume that
useful partners for cosegmentation will be known in advance, we propose to pre-
dict which pairs will work well together. Our results on two challenging datasets
are encouraging evidence that it is worthwhile to actively focus cosegmentation
on relevant pairs.

While so far we have focused on the weakly supervised setting—in which it
is arguably harder to see impact, due to the potential relevance of any candidate
partner—the approach is also applicable to the fully unsupervised setting, as we
will explore in future work. We also plan to extend the algorithm from pairs to
the multi-image joint segmentation scenario.
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